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ABSTRACT
Automatically generating cinematics in computer games could,
not only increase the quality of the player experience, but
also allow more cinematographic visualizations of the game
for other audiences, such as game replays, machinima, au-
dience views or game comics. In all these cases, the virtual
camera controller is expected to find a high quality camera
configuration, often in as little time as possible; however,
in several cases, one optimal camera configuration is not
sufficient and multiple diverse cameras are needed. In this
paper, we show how the intrinsic shape of the the camera
composition objective function contains multiple alternative
solutions, often visually different, that can be used to gener-
ate multiple different shots from the same description. It is
already known that from an optimization standpoint, these
problems are usually multimodal so that algorithms with
restart and/or niching components are needed as we may
otherwise miss the best optima. Here, we are especially in-
terested in exploring the problem landscapes and see how the
difficulty level of finding multiple good shots varies across
several stereotypical scenes.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Optimization; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and
Realism
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1. INTRODUCTION
There can be no doubt that in times of the growing im-

portance of procedural content generation and crowdsourc-
ing, automated camera control is an important support tech-
nique in games and other 3D applications. The task to find
one or multiple good camera positions can be modelled as an
optimisation problem [7] in which the search space consists
of all possible camera configurations and high level proper-
ties are aggregated into an objective function that is to be
optimised.

Although the space of possible camera configurations is
relatively low dimensional (at least 5 dimensions to define
position and orientation), automatic camera control is a
complex optimisation problem for two reasons: the evalua-
tion functions corresponding to frame properties often gen-
erate landscapes that are very rough for a search algorithm
to explore [6]. Moreover, if the controller is used in a real-
time and interactive context, the evaluation of the objective
function is computationally expensive with respect to the
time available for computation, significantly reducing the
number of evaluations available for the search process. In
general, these problems seem to be highly multimodal, but
the degree of ruggedness and the number of basins may vary
a lot across different instances [6, 13].

Additionally, there is often a need to obtain multiple alter-
native good solutions. For instance, Thawonmas et al. [15]
point out how one single best solution is unsatisfactory when
generating comics out of game dialogues. However, the same
conclusion could be easily generalised to any situation in
which a scene with little movement needs to be filmed. In-
stead of the simple cure suggested by Thawonmas et al.
(randomizing the shot definition), we instead use the multi-
modal nature of the problem to generate several solutions
with comparable quality. For this purpose, we propose an
analysis of the landscape of the virtual camera composition
problem, in which we investigate the distributions and the
diversity of the acceptable solutions and we suggest a multi-
objective measure of visual diversity.

Finally, considering that the problem of providing mul-
tiple alternative good solutions naturally calls for applica-
tion of restart/niching methods, as also employed in [13].
Here, we gather further experimental evindence concerning
which methods are most suitable for what kinds of land-



scapes. Note that the optimization algorithms work on an
aggregated single objective function which shall work by the
implicit assumption that two solutions that are located far
from each other in the search space also differ in the con-
stituents of the objective function.

In the reminder of the paper we describe the current state-
of-the-art in virtual camera composition (Sec. 2), we anal-
yse the presence of multiple solutions in a set of representa-
tive camera control problems (Sec. 3) and we showcase how
multiple diverse solutions can be found using a niching and
restart based evolutionary strategy (Sec. 5).

2. RELATED WORK
Since the introduction of virtual reality, virtual camera

control attracted the attention of a large number of re-
searchers [7]. Early studies on virtual camera [16] inves-
tigated manual camera control metaphors for exploration of
virtual environments and manipulation of virtual objects.
However, direct control of the several degrees of freedom of
the camera showed often to be problematic for the user [8]
leading researchers to investigate for the automation of cam-
era control.

In 1988, Blinn [3] showcased one of the first examples of an
automatic camera control system. Blinn designed a system
to automatically generate views of planets in a NASA space
simulator. Although limited in its expressiveness and flex-
ibility, Blinn’s work inspired many other researchers trying
to investigate efficient solutions and more flexible mathe-
matical models able to handle more complex aspects such
as camera motion and frame composition [1].

More generic approaches model camera control as an op-
timisation problem by requiring the designer to define a set
of targetted frame properties which are then put into an ob-
jective function. These properties describe how the frame
should look like in terms of object size, visibility and posi-
tioning. Olivier et al. [11] first formalised the camera control
problem as an optimisation problem and introduced detailed
definition of these properties. Since then, numerous search
strategies have been applied to solve the problem, including
population based algorithms, local search algorithms and
combinations of the two [7]. These approaches offer different
performances with respect to computational cost, robustness
and accuracy; however, none of them addresses the problem
of finding multiple diverse solutions.

Thawonmas et al. [15] identify variety of shots as a ma-
jor problem in automatic generation of cinematics and they
introduce a roulette-wheel selection mechanism to force va-
riety in shot descriptions. However, by altering the shot
properties, this approach does not only vary the shot visual
aspect but potentially changes the shot meaning.

We suggest that shot diversity can be achieved by exploit-
ing the characteristics of the virtual camera composition ob-
jective function. We demonstrate our hypothesis through
an analysis of a set of standard virtual camera composition
problems and by showing that such diversity can be achieved
using a restart and niching based evolutionary strategy.

3. VIRTUAL CAMERA COMPOSITION
An optimal camera configuration is defined as the combi-

nation of camera settings which maximises the satisfaction
of the requirements imposed on the camera, known as cam-
era profile. A camera profile describes the characteristics of

the image that the camera should generate in terms of com-
position properties. Based on the author’s previous work on
automatic camera control [5], the properties that can be im-
posed are: Object Visibility, Object Projection Size, Object
View Angle and Object Frame Position.

The Object Visibility property defines whether an object
(or a part of it) should be visible in the frame: it is calcu-
lated by casting 5 rays to the same number of vertices of
the object’s mesh. The vertices are the top, the lowest, the
leftmost and the rightmost vertices on screen and the one
closets to the object’s center of mass. The overall visibility
value V is defined by the following formula:

V =
Nin

Ntot
∗ 5−Rh

5
(1)

where Ntot is the total number of vertices composing the
mesh of the object, Nin the number of vertices contained
in the view frustum, and Rh is the number of ray cast hits
— i.e. number of occluded vertices. The Object Projection
Size property defines the size an object should have in the
frame and it is calculated as the fraction between the area
included in the bounding rectangle defined by the top, the
lowest, the leftmost and the rightmost vertices on screen and
the screen area. The Object View Angle property defines the
angle from which the camera should frame the object, while
Object Frame Position property defines the position that the
projected image of the object (its center) should have in the
frame, where the upper left angle has coordinates [0,0] while
the lower right one has coordinates [1,1].

Each composition property corresponds to an objective
function which describes the satisfaction of such property.
The complete virtual camera composition objective function
F is a linear combination of the objective functions corre-
sponding to each property included in the camera profile
and is is defined as follows:

F =

Nv∑
i=1

WviFvi +

Np∑
i=1

WpiFpi

+

Na∑
i=1

WaiFai +

Nf∑
i=1

WfiFfi

(2)

where Fvi,Fpi,Fai and Ffi are respectively the objective
function values of the ith Object Visibility property, the ith

Object Projection Size property, the ith Object View Angle
property and the ith Object Frame Position property; Nv,
Np, Na and Nf are the numbers of properties imposed for
property type; Wv, Wp, Wa and Wf are the weights of
each property.

3.1 Test Problems
To analyse the distribution of the solutions in the camera

composition optimisation problem and to assess the perfor-
mance of the proposed solution we consider 3 test problems
in three test environments. In each test problem, the cam-
era controller has to frame a common game situation (e.g.
a dialogue between virtual characters) according to a set of
standard cinematographic visual properties. The test en-
vironments include a large variety of geometrical features
of modern computer games such as closed rooms, walls or
trees. The set of properties of the desired camera configura-
tions and the virtual environments are designed to include
a wide variety of optimisation challenges typical of the vir-
tual camera composition problem such as lack of gradient or



(a) Forest environment (b) House environment (c) Square environment (d) Subject

Figure 1: Test problems’ virtual environments and subject model.

multi-modality.
The test problems are set in three different environments:

a forest (see Fig. 1(a)), a house (see Fig. 1(b)) and a square
(see Fig. 1(c)). In each environment three different problems
are tested with respectively one, two and three subjects (see
Fig. 1(d)): a long shot of one subject, a side shot of two
subjects facing each other and an over the shoulder shot of
one subject facing two others.

The first problem contains three properties set on the sub-
ject: an Object Visibility, an Object Projection Size and an
Object View Angle. The properties are parametrised so that
the visibility should be full, the projection of the subject
should occupy the whole screen and the objective should be
facing the camera. In the second problem, the same three
properties are imposed on each subject, the only difference
being that the angle should be lateral. The last problem is
based on the chat scene by Thawonmas et al. [15] and it in-
cludes three characters with one ideally chatting to the other
two and should be framed with an over-the-shoulder shot. A
a full Object Visibility property is imposed on all subjects, as
well as an Object Projection Size and and Object View Angle
properties; however, the parameters for these two properties
differ. The two subjects standing side by side are expected
to cover just one third of the screen and to be shot frontally,
while the subject facing them should cover the screen com-
pletely and should be shot from his back. Moreover, the
latter should also have a projection positioned in the lower
right quadrant of the screen, at position [0.66,0.33].

Each problem is tested in three different environments,
one indoor and two outdoor, with different geometrical char-
acteristics. The forest environment is an outdoor virtual
environment composed by a cluster of threes, the subjects
are placed between these threes which act as partial as scat-
tered obstacles. As displayed in Fig. 2(a), Fig. 2(b) and
Fig. 2(c), such environment influences the objective func-
tion landscape by increasing the modality; this is mostly due
to the fact that the three trunks are thin occluders which
produce a slicing effect in the objective function landscape.
The second environment analysed in this paper, the house,
is an indoor environment with closed spaces separated by
solid walls. As described in [6], walls act as large occluders
inducing large areas of the objective function landscape to
have little or no gradient. Figures 2(d), 2(e) and 2(f) display
the aforementioned characteristic which is smoothed by the
presence of other properties besides Object Visibility in the

problem description. The last environment, the square, is
the simplest one from a geometrical perspective. It is largely
an empty space with one single obstacle placed in the center.
All the test problems in this environment exhibit a mostly
smooth objective function landscape with a lower number of
modalities (see Fig. 2(g), Fig. 2(h) and Fig. 2(i)). While
this environment does not appear particularly challenging
in terms of optimisation complexity, it has been included
in the study for completeness, and to analyse the solutions
distribution also in the simplest cases.

4. SOLUTIONS DIVERSITY
All the objective function landscapes displayed in Fig. 2

exhibit multiple modalities — i.e. multiple areas which con-
tain either local or global optima — which might contain
multiple alternative camera configurations. To analyse the
arrangement and the number of these solutions we have first
to define which solutions we consider valid, what are the
characteristics that these solutions should have to be con-
sidered good alternatives and how we measure these charac-
teristics.

For this analysis, we consider to be a valid solution any
solution having an objective function value equal or greater
than 0.95 times the value of the global optimum. The 5%
threshold has been chosen, after multiple trials, to guarantee
that the solutions considered have a quality not perceivably
worse than the global optimum; moreover, all the test prob-
lems analysed have multiple solutions above this threshold.
The solutions with an objective function value within the
aforementioned range are all contained roughly in the white
areas of the landscapes depicted in Fig. 2.

When looking for more than one solution to a composi-
tion problem a new measure becomes necessary: the solu-
tions should appear diverse to be valuable; therefore, it is
important to define numerically the concept of diversity. In
the authors’ first attempt to deal with shot diversity [13] the
difference between two solution was defined as the euclidean
distance between the two camera locations. However, while
such a decision space distance gives an intuitive measure
of difference, it does not guarantee or quantify the differ-
ence between the visual features of the two generated shots
(nevertheless, we assume that there is a correlation between
these two).

To be able to quantify these differences we need a numer-



(a) Forest - 1 Subject (b) Forest - 2 Subjects (c) Forest - 3 Subjects

(d) House - 1 Subject (e) House - 2 Subjects (f) House - 3 Subjects

(g) Square - 1 Subject (h) Square - 2 Subjects (i) Square - 3 Subjects

Figure 2: Maximum value of the problems’ objective function sampled across the X and Z axis of the virtual
test environments. The circles correspond to the position and orientation of the subjects in the virtual
environment.

ical measure of the distance between the shots rather than
the cameras placements. For this purpose, in this paper we
attempt to measure the difference between shots within the
objective function space instead of the search space. This
is the vectorial space defined by the satisfaction values of
the properties composing the overall objective function –
i.e. we decompose the virtual camera composition problem
into a multi-objective optimisation and we measure diversity
as the euclidean distance within the space defined this way.
The distance value between two solutions a and b, D(a, b),
is defined as follows:

D(a, b) =

√∑k
i=1(fi(a)− fi(b))2

√
k

(3)

where k is the number of properties of the problem and fi(x)
is the weighted satisfaction value of the ith property of the
problem for solution x. The distance function is divided
by the square root of the number of properties, to make
the measure independent to the value of k and normalised
between 0 and 1.

Using this measure it is possible to analyse the nine test
problems’ landscapes from a solutions diversity perspective.
The ideal solutions to the problem should have a minimal
objective function difference with the global optimum — i.e.
the overall quality should similar — but should be as dis-
tant as possible to the global optimum in the multi-objective
space — i.e. the shots generated should have different visual
features. Identifying the best solutions is, therefore, itself



a multi-objective problem, in which the objective function
difference has to be minimised, while the objective space
distance has to be maximised. Figure 4 shows the solu-
tions within the previously defined validity range for each
test problems sorted by quality (objective function differ-
ence) and diversity (multi objective space distance). The
most interesting solutions, highlighted in red color, are the
ones belonging to the Pareto front, which are, therefore, non
dominated by any other solution to the problem.

It is evident from the figures that each considered prob-
lem contains at least three solutions belonging to the Pareto
front, with objective space distances up to 38% of the max
distance. Moreover, these values have been obtained with
a 32000 points sampling of the solutions pace; therefore we
can expect that with a more refined sampling more Pareto
solutions could be found for each problem. An example of
two solutions belonging to the Pareto front is depicted in
Fig. 4(b), the two shots are respectively the optimal solu-
tion to the long shot problem in the forest environment and
and alternative solution with an overall quality only lower
by 1.8% to the optimum but an objective space distance
equal to 0.303.

It is interesting to notice how, even in a relatively simple
composition problem such as a long shot, it is possible to
find multiple alternative solutions with a significant visual
difference. This would probably not be possible in a properly
designed scene, where no obstacles compromise the shot;
however, it is a common situation if the scene to be shot
comes from a game or any other situation where staging is
impossible or and ideal staging is not feasible.

We believe that, by exploiting the structure of the prob-
lem, it is possible to design a camera controller able to track
multiple optimal solutions and, in the reminder of the paper,
we show how this is possible using an evolutionary strategy
employing niching and restart.

5. FINDING MULTIPLE SOLUTIONS
As the problem at hand is obviously multimodal (see fig. 2),

it would be dangerous to rely on a simple one-shot conver-
gence process even if we wanted to find only one very good
shot position. However, we now strive for detecting sev-
eral good solutions quickly which makes it even more im-
portant to stop and restart as soon as possible. In [13], we
have investigated how the CMA-ES without population in-
creasing heuristic 1 and a CMA-ES derived niching method,
NEA2, perform on some camera positioning problems. In-
stead of diversity of solutions in search space, we are now
interested in diversity in objective space, but we presume
that these methods are still doing much better than stan-
dard variants of Particle Swarm Optimisation (PSO) [10],
Differential Evolution (DE) [14], and Sliding Octree (SO) [4]
(which were also in the set of algorithms in the previous com-
parison). The only derivation of the default parameters we
make for CMA-ES and NEA2 modification is the TolFun

stopping criterion which is highly connected to the desired
accuracy [9]. This is set to a value of 10−3 which is still
below the needed accuracy. The effect of this setting is that
fruitless searches in local optima are stopped earlier, thus
more restarts can be done. Obviously, the change does not
affect PSO, DE and SO, as they do not use restarts. They

1Nikolaus Hansen - The cma evolution strategy: A tutorial.
Version of June 28, 2011

(a) Optimal solution

(b) Alternative optimal solution from the Pareto front

Figure 4: An example of two solutions belonging
to the Pareto front of optimal solutions of the long
shot in the forest environment. The objective space
distance between the two solutions equals to 0.303
while the difference between the two objective ob-
jective function values is 0.018

shall profit from doing so, but the many of the standard
CMA-ES stopping criteria cannot easily be transferred to
these methods.

In [13], CMA-ES and NEA2 performed head-to-head, with
a slight advantage of CMA-ES on the simpler problems and
NEA2 on the more complex problems. This makes sense
because the niching method uses an initial scan (with 200
samples in 5D) to obtain a partitioning of the search space
in several basins of attraction, and uses this information to
prevent multiple searches in the same basin. A typical CMA-
ES run uses about 500 to 1000 evaluations in 5D before the
first restart is initiated. Thus, NEA2 can only be quicker
than the CMA-ES if the landscape is considerably complex.

5.1 Performance Measures
As described in section 4, we are interested in solutions

with less than 5% quality difference to the presumed op-
timum, which is determined with the 32000 samples scan
used already in section 4. The expected time to reach the
desired quality for the first time is computed over several
repeated runs after the expected runtime (ERT)2 definition
suggested in [2], with #fevals being the sum of all eval-

2The term may be misleading as it is defined in evaluations,
for absolute times it has to be multiplied with 16 ms.



●

●

●

●●

●

●●

● ●

●

●

●

●

●

●●

0.00 0.01 0.02 0.03 0.04

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Objective Function Difference

M
ul

ti 
O

bj
ec

tiv
e 

S
pa

ce
 D

is
ta

nc
e

●

●

●

(a) Forest - 1 Subject
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(b) Forest - 2 Subjects
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(c) Forest - 3 Subjects
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(d) House - 1 Subject
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(e) House - 2 Subjects
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(f) House - 3 Subjects
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(i) Square - 3 Subjects

Figure 3: Optimal solutions (value > 0.95 * global optimum) of each test problems sorted by multi-objective
space distance to the global optimum and objective function value difference with the global optimum. The
red dots represent the solution belonging to the Pareto front. The plots have been generated by sampling
each test problem linearly with approximately 32000 samples.

uations that were spend before reaching the target value
ftarget, and #succ standing for the number of successful
runs:

ERT =
#fevals > ftarget

#succ
(4)

The next important task is to find a solution of similar
quality but with a large objective space distance as measured
by equation (3). If a first good solution was found, we scan
the remainder of the run (until it finally ends after 5000
evaluations), detect the most diverse good solution, and also
compute its ERT value.



5.2 Experiment
With the following experiment we want to find out which

of the suggested algorithms, CMA-ES, NEA2, PSO, DE or
SO is capable of reliably reaching good fitness values at least
once and then generate a second good but diverse solution.
Standard variants of DE, PSO and SO methods have been
included as representatives of previous approaches to the
problem.
Setup.

We run each algorithm on each of the nine problem in-
stances (scenarios) 20 times for 5000 evaluations. Perfor-
mance is measured as given in sec. 5.1. All parameters are
kept at default values, except for the TolFun stopping cri-
terion (applying to CMA-ES, NEA2) which is set to 10−3.
Default values for NEA2 are provided in [12]. The start
population is determined randomly for the CMA-ES based
methods and the stepsize start value is set to 0.15 in the
normalized parameter space [0, 1].
Task.

Taking the obtained measures of the algorithms on the dif-
ferent problems into account, we want to determine which
algorithms reliably find good solutions quickly and also pro-
vides a second good, diverse solution in time (before the end
of the run on average). Additionally, we look for relations
between the type of problem (Forest, House, Square, 1, 2,
and 3 subjects) and the algorithm performance.
Results/Visualization.

Table 1 shows the averaged results over the different prob-
lems, with ERT1 giving the expected runtime for reach-
ing the first good solution, ERT2 the expected runtime for
obtaining the most diverse good solution, and ∅ dist(1,2)
standing for the objective space diversity between these two,
averaged over all 20 runs (assuming 0.0 where no second so-
lution was found, and an ERT of∞ meaning that no first or
second solution was obtained in all 20 runs, respectively).
Observations.

We first note that the only 2 algorithms that obtain 2
solutions reliably in all cases are CMA-ES and NEA2. DE
and PSO do so often, but not always, and SO is always the
weakest algorithm and sometimes fails to find a solution in
any of the 20 runs. The average distances between the first
and the most diverse solution are in all cases the highest
for CMA-ES and NEA2 (see Fig. 5 for a sample of two
solutions found by NEA2), and usually much smaller for the
other methods. When considering the best 2 algorithms, it
seems that the 1 subject scenarios are always the easiest to
solve. For the forest and the square problems, the 2 subject
scenarios are the most difficult, followed by the 3 subject
scenarios. This is different for the house scenarios, where
the order is 1 subject, 2 subjects, 3 subjects. Overall, the
ERT1 and ERT2 values are only slightly increase for the
more difficult scenarios (at least for CMA-ES and NEA2).
Discussion.

It is no surprise that CMA-ES and NEA2 do not differ
much in performance, so that one may rely on CMA-ES as
default method. The only case where NEA2 is clearly better
is the square with 2 subjects. Taking the search space struc-
ture of the problems as depicted in figure 2 into account, this
may stem from the difficulty to separate the two good areas
above and below the subjects, which are relatively small and
close to each other. However, this is difficult to say as the
figures plot the search and not the objective space diversity
— these two are presumably related, but the objective space

Table 1: Averaged performance of the 5 algorithms
Algorithm ERT1 ERT2 ∅ dist(1,2) Problem
pso 1580 4091 0.16 Forest - 1 Subs.
cma-es 471 2515 0.28
de 1599 2533 0.07
so 2929 3176 0.08
nea2 636 2592 0.28
pso 211 1925 0.22 Forest - 2 Subs.
cma-es 961 2812 0.24
de 546 1850 0.20
so 6356 6858 0.06
nea2 1152 2663 0.24
pso 8438 10245 0.08 Forest - 3 Subs.
cma-es 598 2398 0.35
de 998 1928 0.27
so ∞ ∞ 0.00
nea2 763 2718 0.36
pso 3973 7374 0.11 House - 1 Subs.
cma-es 498 2514 0.29
de 20927 23778 0.02
so 12281 12537 0.00
nea2 764 2455 0.26
pso 754 2849 0.25 House - 2 Subs.
cma-es 623 2849 0.28
de 7033 8590 0.08
so ∞ ∞ 0.00
nea2 819 2465 0.29
pso 97002 99440 0.01 House - 3 Subs.
cma-es 814 2640 0.23
de ∞ ∞ 0.00
so ∞ ∞ 0.00
nea2 1016 2774 0.20
pso 505 1543 0.30 Square - 1 Subs.
cma-es 476 2464 0.34
de 470 1685 0.28
so 2252 2558 0.06
nea2 562 2646 0.35
pso 1966 4199 0.14 Square - 2 Subs.
cma-es 1900 3440 0.20
de 1393 2685 0.18
so 28518 28730 0.01
nea2 1392 2460 0.20
pso 95407 97956 0.01 Square - 3 Subs.
cma-es 778 2650 0.23
de 1217 1890 0.17
so ∞ ∞ 0.00
nea2 1097 2838 0.20

may add some difficulties we cannot see in the pictures. As
the objective space distances depend on both points, they
cannot be plotted in 2D. The house 2 problem may be easier
because it provides two much larger good regions (at least
in the search space, see figure 2).

Additonally, we have to take into account that the algo-
rithms are asked to deliver diverse solutions in a space they
cannot see, they act only on the single aggregated objective
value. This could be cured by either trying a multi-objective
approach or with some new technique direct the restarts into
regions of high objective space distance to the already found
good solution (some sort of objective space niching).

6. SUMMARY AND CONCLUSIONS
This paper proposes an approach to shot diversity in vir-

tual camera composition based on the characteristics of com-
position as an optimisation problem. We show that, in
a wide range of examples, covering different composition



(a) First solution

(b) Second solution

Figure 5: An example of two solutions found by
NEA2 fo a one subject problem set in the square
environment. The solutions have objective space
distance equal to 0.28

problems and different types of virtual environments, it is
possible to find multiple valid camera configurations opti-
mising the problem. Although, with different magnitude,
each problem exhibits exhibits solutions which are different
in terms of visual characteristics but yet similar in quality.
Moreover, we demonstrate that such solutions can be found
using a niching and restart based evolutionary algorithm For
this purpose, we present an experiment in which we compare
the behaviour of NEA2, a novel niching evolutionary algo-
rithm, against a set of state-of-the-art algorithms for optimi-
sation of virtual camera composition on the task of finding
two different valid solutions on nine test problems.

The analysis of the test problems confirms the presence
of multiple valid solutions for each problem, while there-
sults of the comparison reveal that NEA2, as well as a base-
line CMA-ES, are eable to find multiple diverse solutions,
systematically in all the test problems. Such multiple solu-
tion hold a potentially valuable information also in real-time
camera control and animation, as these multiple cameras
could be used to perform real-time cinematographic cuts or
as backup camera solutions. However, to evaluate the appli-
cability of such approach, it would be necessary to evaluate
how the optimisation problem changes during time in a dy-
namic environment.

Finally, we believe that a further investigation of the cor-
relation between the multi-objective space distance and the
search space distance, would reveal more valuable informa-

tion about the topology of the solutions, helping the devel-
opment of more accurate and efficient algorithms.
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âĂŞ A Simple and Efficient Heuristic for global
Optimization over Continuous Spaces. Journal of Global
Optimization, 11(4):341–359, 1997.

[15] Ruck Thawonmas, Ko Oda, and Tomonori Shuda.
Rule-Based Camerawork Controller for Automatic Comic
Generation from Game Log. In IFIP International
Conference on Entertainment Computing, pages 326–333,
Seoul, 2010.

[16] Colin Ware and Steven Osborne. Exploration and virtual
camera control in virtual three dimensional environments.
ACM SIGGRAPH, 24(2):175–183, 1990.


	Introduction
	Related Work
	Virtual Camera Composition
	Test Problems

	Solutions Diversity
	Finding Multiple Solutions
	Performance Measures
	Experiment

	Summary and Conclusions
	References

